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ABSTRACT: Most microbial communities change with time
in response to changes and/or perturbations in environmental
conditions. Temporal variations in interspecies metabolic
interactions within these communities can significantly affect
their structure and function. Here, we introduce d-OptCom,
an extension of the OptCom procedure, for the dynamic
metabolic modeling of microbial communities. It enables
capturing the temporal dynamics of biomass concentration of
the community members and extracellular concentration of the
shared metabolites, while integrating species- and community-
level fitness functions. The applicability of d-OptCom was demonstrated by modeling the dynamic co-growth of auxotrophic
mutant pairs of E. coli and by computationally assessing the dynamics and composition of a uranium-reducing community
comprised of Geobacter sulfurreducens, Rhodoferax ferrireducens, and Shewanella oneidensis. d-OptCom was also employed to
examine the impact of lactate vs acetate addition on the relative abundance of uranium-reducing species. These studies highlight
the importance of simultaneously accounting for both species- and community-level fitness functions when modeling microbial
communities, and demonstrate that the incorporation of uptake kinetic information can substantially improve the prediction of
interspecies flux trafficking. Overall, this study paves the way for the dynamic multi-level and multi-objective analysis of microbial
ecosystems.
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Microbial communities are involved in a wide range of
biological and biotechnological processes. For example, they
are responsible for driving biogeochemical cycles of carbon and
nitrogen1 and play fundamental roles in human health and
disease.2−5 The unique metabolic capabilities of these
communities have been harnessed for biofuel production,6,7

biodegradation of alkanes, and natural attenuation of
pollutants,8−11 dissimilatory metal reduction from subsurface
environments,12−14 biological wastewater treatment,15,16 and
more.17 Members of a microbial community can interact by
unidirectional or bidirectional exchange of metabolites or
charged compounds giving rise to mutualism, synergism,
commensalism, parasitism, or competition among community
members.18−21 Microbial communities are known to exhibit
dynamic shifts in their metabolism as well as in their
interspecies interactions in response to perturbations in
environmental condition in order to support co-growth,
survival, and stability22,23.24 A well-known example is the
day−night or seasonal variations.25,26 The interspecies
interactions and their temporal changes play pivotal roles in
shaping the community composition, structure, and function;27

however, the nature of these interactions and their dynamic
variations are not well understood yet.
With the ever-increasing availability of reconstructed

metabolic models of microorganisms a number of methods
based on the constraint-based analysis have been developed

recently to study the steady-state behavior of simple microbial
consortia.22,27−33 The pioneering effort was modeling a two-
member mutualistic microbial community consisting of a
sulfate-reducing bacteria and a methanogen using a multi-
species compartmentalized stoichiometric metabolic model.27 A
similar approach was employed for the metabolic modeling of a
syntrophic association between Clostridium butyricum and
Methanosarcina mazei.28 In another effort, a workflow was
presented by Lewis et al.29 to model human metabolism within
and between different types of cells. On another front,
Wintermute and Silver22 proposed a procedure to identify the
mutualistic relationships in pairs of auxotrophic E. coli mutants,
where each pair was modeled using an extended form of the
minimization of metabolic adjustment (MOMA) hypothesis.34

Nagarajan et al.31 proposed a multi-omics modeling workflow,
combining genomic, transcriptomic, and physiological data with
genome-scale models to assess interspecies electron transfer in
a syntrophic microbial community comprising of two Geobacter
species. By assessing the entire spectrum of feasible interactions
between the partners using phenotypic phase plane analysis,32

they identified distinct optimal and suboptimal phases of
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interspecies electron transfer. A number of other approaches
that are not based on flux balance analysis (FBA) have been
also attempted for modeling of microbial communities
including elementary mode analysis, evolutionary game theory,
nonlinear dynamics, and stochastic processes.35−41

Given that the microbial metabolism and metabolic
interactions in microbial communities are of an intrinsic
dynamic nature as noted earlier, a dynamic modeling
framework is an absolute necessity to explore the exper-
imentally testable and/or unverifiable hypotheses. Despite the
availability of dynamic modeling frameworks for single
species,42,43 the development of community-level dynamic
models is a challenging task due to the increased complexity
and incomplete knowledge about the dynamics of interspecies
interactions over a changing environment. There have been a
number of recent efforts aimed to address this chal-
lenge,12,30,33,44−47 most of which are based on the extension
of the dynamic flux balance analysis (dFBA) for single
species.42 The first attempt in this direction was a computa-
tional framework called the Dynamic Multi-species Metabolic
Modeling (DMMM) proposed by Zhuang et al.12 This
procedure is based on an extension of the dFBA42 for
individual species and was used to model the competition
between Rhodoferax ferrireducens and Geobacter sulfurreducens in
an anoxic subsurface environment under both naturally
occurring and manually stimulated conditions. The same
procedure was employed for modeling another community
comprised of Clostridium acetobutylicum and Clostridium
cellulolyticum.45 Hanly and Henson46,47 also used a similar
procedure based on dFBA to model dynamics of microbial co-
cultures of E. coli and S. cerevisiae46 as well as respiratory-
deficient Saccharomyces cerevisiae and wild-type Schef fersomyces
stipitis strains.47 Zhuang et al.44 later proposed an extension of
their earlier DMMM12 approach to devise a long-term practical
bioremediation strategy for uranium reduction. In a more
recent study, Minty et al.23 developed another framework
where the dynamic co-growth of two species is simulated by
solving a system of ordinary differential equations (ODEs)
representing mass balances in a batch culture and hierarchical

clustering techniques are used to reveal feasible region of
substrate partition between competing community members.
This procedure was employed for the characterization of a
synthetic fungal−bacterial consortium for the efficient biosyn-
thesis of valuable products (e.g., isobutanol) from lignocellu-
losic feedstock.
Despite these efforts, all the methods described so far (except

for the studies of Zhuang et al.44 and Minty et al.23) are based
on optimization problems with a single objective function. As
such, a comprehensive dynamic modeling framework capable of
simultaneously accommodating multiple species- and commun-
ity-level fitness criteria is still lacking. To capture the multi-level
nature of decision making in microbial communities, we
previously introduced OptCom48 that uses a multi-level and
multi-objective optimization formulation capable of capturing
both species- and community-level fitness criteria. Here, we
introduce d-OptCom (dynamic OptCom) for the multi-
objective dynamic analysis of microbial communities. d-
OptCom incorporates the dynamic mass balance equations
and substrate uptake kinetics in its modeling framework and
enables the direct assessment of the shared metabolites and
biomass concentrations in a given community. This procedure
was used first to model dynamics of the co-growth of E. coli
auxotrophic mutant pairs. It was then employed to elucidate the
impact of the addition of a new member to a uranium-reducing
microbial community on its growth, dynamics, and composi-
tion, as well as to assess the efficacy of lactate and acetate
injection to enhance uranium reduction. These analyses show
the importance of integrating species- and community-level
fitness functions and reaffirm the impact of incorporating
kinetic information in improving the prediction of interspecies
fluxes.

■ METHODS

The original OptCom procedure is a multi-level and multi-
objective optimization framework that postulates a separate
biomass maximization problem for each community member as
inner problems.48 Interspecies interactions are modeled by
using constraints in the outer problem imposing a flux balance

Figure 1. Optimization structure of d-OptCom. Dynamic equations representing the conservation of mass for the biomass of each species and each
shared metabolite with available uptake kinetics are added as new constraints to the outer problem. The upper bounds on uptake rates are
determined by using uptake kinetic expressions.
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in the extracellular environment for each shared metabolite.
Inner problems are integrated and linked with each other by
using inter-organism flow constraints so as to optimize an
outer-level objective function. The objective function of the
outer problem represents a community-level fitness criterion, or
surrogates a desired (community) engineering objective.
Descriptive OptCom is a modified mode of OptCom, which
enables quantification of the deviation of individual species
from their optimal growth phenotype consistent with
experimental observations. This is achieved by incorporating
any available experimental data about the entire community or
individual species in the optimization problem using new
constraints in the outer problem, or inner problems of the
respective species, respectively. Deviation of each species from

its optimal behavior is measured using a metric called
“optimality level”, which can take a value of less than, equal,
or greater than one representing, suboptimal, optimal, or
superoptimal behavior of the community members.48 More
details about OptCom and Descriptive OptCom as well as an
improved solution procedure using the KKT conditiona is
given in Supporting Information.

Dynamic Modeling of Microbial Communities Using
d-OptCom. The OptCom procedure was extended to capture
dynamic changes in microbial communities. To this end, new
time-dependent constraints representing the conservation of
mass for the biomass of each species and shared metabolites
with available uptake kinetics are added to the outer problem
(see Figure 1). The upper bound on uptake rate of each shared

Figure 2. Modeling the co-growth of auxotrophic E. coli mutant pairs using d-OptCom. A, E, and I compare the predicted biomass fraction of each
species after four days (96 h) with experimental measurements.22 B, F, and J indicate the predicted cell density of each community member using d-
OptCom, and C, D, G, H, K, and L show the predicted extracellular concentration of the shared amino acids. The biomass fraction of each species in
A, E, and I was computed by dividing the species cell density (cells/L) by the sum of cell densities of both community members.
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metabolite is determined by using the uptake kinetic
expressions incorporated as additional constraints in the outer
problem. The inter-organism flow constraint (from the original
OptCom procedure) is used instead of conservation of mass
equations for each shared metabolite without any uptake
kinetics. The uptake/export rates of shared metabolites are
determined by the outer problem; however, they act as
parameters for inner problems of the respective community
members. This multi-level optimization problem can be recast
as a nonlinear problem or a mixed-integer nonlinear problem
by using the strong duality or KKT conditions for inner
problems, respectively. In both cases the problem is, in general,
nonconvex due to the presence of uptake kinetic expressions
and conservation of mass equations. Therefore, we used the
global optimization solver BARON49 accessible via GAMS and/
or GlobalSearch function in MATLAB (MathWorks Inc.) to
solve the case studies presented in this paper to global
optimality. Details of the d-OptCom procedure and its solution
procedure are given in Supporting Information.
d-OptCom enables not only capturing the dynamic behavior

of microbial communities but also incorporation of the biomass
and shared metabolite concentrations in the modeling frame-
work. For example, it is possible to maximize the total biomass
concentration of the community instead of maximizing the total
biomass flux of the community (i.e., sum of the biomass fluxes
of community members) as used in the original OptCom
procedure. Alternatively, one can maximize (minimize) the
concentration of a desired (undesired) shared metabolite or
minimize deviation from a target time-dependent concentration
pattern as the engineering objective. Furthermore, this extends
the concept of Descriptive OptCom48 to a dynamic context
(i.e., Descriptive d-OptCom) where constraints on actual
extracellular concentrations (e.g., the biomass composition of
the community) can be added to the outer (or inner)
problem(s) in order to determine dynamic changes in
optimality level of each community member.
Dynamic Modeling in the Absence of Uptake Kinetics.

In the absence of uptake kinetics for all the shared metabolites,
instead of using the ON/OFF method12 (allowing the
unlimited uptake of the shared metabolites by each community
member), regular OptCom can be used in a dynamic fashion by
successively applying it in consecutive time intervals in order to
identify how the inter-organism metabolite traffic flows should
be apportioned among the community members to satisfy the
community-level fitness (or engineering objective). Similarly,
Descriptive OptCom can be used within each time interval to
identify the optimality levels of community members consistent
with available experimental observations (see Supporting
Information for an example).

■ RESULTS AND DISCUSSION
Co-growth of Auxotrophic E. coli Mutant Pairs. We

used d-OptCom to model and analyze the dynamics of a
synthetic mutualistic relationship between pairs of auxotrophic
E. coli mutants. Wintermute and Silver22 previously examined
the co-growth of several combinations of 46 mutant strains,
where the deletion(s) in each strain blocks the biosynthesis of a
biomass precursor such as amino acids, nucleotides, or
cofactors. Each strain is able to grow in the rich (LB) medium
but not in the minimal (M9) medium. Certain pairs of
dissimilar mutant strains were observed to be capable of
complementing one another’s growth in the minimal medium
through cross-feeding the essential metabolites.22 These mutant

pairs show a higher growth in the co-culture compared to
individual growth in supplemented minimal medium. Winter-
mute and Silver22 measured the community growth each day
over four days and biomass fraction of each species after four
days.
Here, we examined whether d-OptCom is capable of

recapitulating the co-growth of cooperating partners. To this
end, we selected three such mutant pairs comprised of four
genes involved in the production of different amino acids with
available uptake kinetics. These pairs include (ΔargH, ΔlysA),
(ΔlysA, ΔtrpC), and (ΔmetA, ΔilvE), where the deletion of
argH, lysA, trpC, metA, and ilvE block the production of L-
arginine, L-lysine, L-tryptophan, L-methionine, and L-isoleucine,
respectively. We assumed that the blocked amino acids are the
primary metabolites being shared between the two partners;
however, it is worth noting that some auxotrophic mutants
could rescue one another by sharing not necessarily the missing
amino acid but instead a precursor thereof. For example, certain
tryptophan deficient mutants can be rescued by sharing indole
instead of tryptophan.22 The iAF1260 model of E. coli50 was
used for this study, and gene knockouts were simulated by
setting the flux of corresponding reactions in the model to zero.
Maximization of the total community biomass concentration
(cells/L) was chosen as the outer (community-level) objective
function, and each species was assumed to maximize its biomass
flux in the inner problems. The initial concentration of the
shared amino acids was set to zero, and the simulation horizon
was 100 h (details of simulation parameters are given in
Supporting Information). The predicted biomass fraction of
each species after four days as well as the dynamic changes in
cell densities and shared amino acid concentrations for each
mutant pair are represented in Figure 2. As shown in this figure
d-OptCom can successfully predict the co-growth of all three
mutant pairs, and in addition, the predicted biomass fraction of
each partner is in good agreement with experimental
measurements for all three mutant pairs (see Figure 2A, E,
and I). For example, d-OptCom predicts that the co-culture of
ΔmetA and ΔilvE is composed of 14.40% ΔmetA and 85.60%
ΔilvE after four days (96 h), which is very close to 15.08% and
84.02% measured experimentally.22 The higher biomass
fraction of ΔilvE was correctly predicted by d-OptCom, as it
incorporates the substrate uptake kinetics. For example, Vmax
and Km for L-isoleucine uptake are 0.0346 mmol/gDW·h and
1.22 × 10−3 mM, whereas those for L-methionine are 0.0140
mmol/gDW·h and 2.3 × 10−3 mM. In the absence of any
uptake kinetics (e.g., using regular OptCom), approximately
equal biomass fractions are predicted for both partners as long
as the stoichiometric coefficients of the shared amino acids in
the biomass reaction are not significantly different. As shown in
Figure 2, the selected mutant pairs expand their own pool of
required amino acids by aiding the growth of their conjugate
partners. This cooperative behavior was captured by d-OptCom
as it simultaneously takes into account species and community-
level fitness functions enabling it to identify the impact of
interspecies interactions on the shared metabolite and biomass
concentrations. In contrast, simulation of the same mutant pairs
with DMMM procedure12 did not predict any co-growth. This
is because in the absence of a community-level fitness function
participating species do not have any incentive to cooperate,
even though the initial concentration of the essential amino
acids was zero. This study underlines the usefulness of a
community-level fitness function in cooperative microbial
communities.
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Dynamic Analysis of Subsurface Uranium-reducing
Communities. Geobacter sulf urreducens and Rhodoferax
ferrireducens are known to be capable of dissimilatory metal
reduction in anoxic subsurface environments13 reducing Fe(III)
to Fe(II) while oxidizing acetate. G. sulfurreducens can also
reduce U(VI) to U(IV),51,52 making it a suitable candidate for
bioremediation applications in uranium-contaminated ground-
water.53,54 Growth of G. sulfurreducens and R. ferrireducens rely
on the acetate produced by other microorganisms present in
the community (such as Clostridia and δ-proteobacteria55) as the
carbon source. In addition to acetate, these two microorganisms
compete for ammonium and Fe(III) in the subsurface
communities of Rifle, CO. Genome-scale metabolic models
for these two microorganisms were reconstructed before.56−58

These models were used by Zhuang et al.12 for the metabolic
modeling of this community using the DMMM framework and
to design long-term uranium bioremediation strategies.44

Here, we examined the impact of the addition of an acetate-
producing member to the G. sulfurreducens−R. ferrireducens
community by using the d-OptCom procedure. We chose
Shewanella oneidensis as it is a known acetate producer59−61

with a reconstructed genome-scale metabolic model.59 In
addition, S. oneidensis can reduce U(VI) to U(IV),52 coupling
this reduction with the oxidation of lactate. The combined
uranium reduction capability of S. oneidensis and G.
sulfurreducens may thus promise a more effective bioremedia-
tion strategy. The metabolic interactions of the three-member
community composed of S. oneidensis, G. sulfurreducens, and R.
ferrireducens are shown in Figure 3. We assumed that lactate is

the sole available carbon source for S. oneidensis in the
community. Neither G. sulfurreducens nor R. ferrireducens are
capable of metabolizing lactate and thus rely on the acetate
produced by S. oneidensis and other community members.
Notably, while S. oneidensis supplies acetate to G. sulfurreducens
and R. ferrireducens, it also competes with them for Fe(III).
Maximization of the biomass ‘flux’ (h−1) was used in the inner
problems of d-OptCom to capture the species-level driving
forces and maximization of biomass ‘concentration’ of the
entire community (cells/L) was chosen as the community-level

objective function. All simulations were performed under the
ammonium excess condition (i.e., [NH4] = 400 μM12).
Ammonium, acetate, and Fe(III) uptake kinetic parameters
for G. sulfurreducens and R. ferrireducens as well as environ-
mental parameters were all obtained from Zhuang et al.12 The
lactate uptake kinetics for S. oneidensis was estimated from the
growth kinetics on this carbon source62 by using FBA (see
Supporting Information for details). Similar to R. ferrireducens,
the Fe(III) uptake kinetics of S. oneidensis was assumed to be
the same as G. sulfurreducens.12 The lactate concentration in the
medium was assumed to be 5 mM.63−65 Furthermore, the
subsurface environment in the Rifle site was modeled as a
chemostat similarly to the previous studies.12 All simulation
parameters are provided in the Supporting Information.
We assessed how the biomass composition of this three-

member community changes with time as a function of the
combined positive and negative interspecies interactions.
Dynamic simulations using d-OptCom show that in the long
run S. oneidensis dominates the co-culture almost completely
(see Figure 4). This can be attributed to the higher growth
yield and better uptake efficiency of S. oneidensis when growing
on lactate compared to those of G. sulfurreducens and R.
ferrireducens when growing on acetate. For example, Vmax for the
lactate uptake by S. oneidensis was estimated to be 75 mmol/
gDW·h, which is more than 5 and 53 times greater than the
Vmax of G. sulf urreducens (13.3 mmol/gDW·h) and R.
ferrireducens (1.71 mmol/gDW·h) for acetate uptake, respec-
tively. In addition, FBA simulations show that with the same
Fe(III) uptake rate, the growth yield of S. oneidensis on lactate
(0.68 gDW/mmol per 100 mmol of lactate uptake) is almost
twice that for G. sulfurreducens (0. 33 gDW/mmol per 100
mmol of acetate uptake), and more than six times greater than
the growth yield of R. ferrireducens on acetate (0.11 gDW/
mmol per 100 mmol of acetate uptake).

Comparison of OptCom and d-OptCom Predictions.
Simulation of the three-member community using regular
OptCom was performed with maximization of the biomass flux
of the entire community as the outer objective function. This
analysis revealed that the observed long-term behavior of the
community cannot be captured by the regular OptCom
procedure. For example, regular OptCom predicts that with
the estimated lactate and acetate community uptake rates under
natural subsurface conditions12,66 (see Supporting Information
for details), S. oneidensis constitutes only 35% of the total
community biomass (assuming that the ratio of biomass fluxes
is proportional to the respective biomass fractions).
This inconsistency is because regular OptCom simulates only

a snapshot of the dynamic behavior close to initial condition. In
addition, in the absence of any kinetic information, it freely
apportions the shared resources to the community members so
as to optimize the community-level objective function. Another
contributing factor to this inconsistency is the difference in the
way component balances are handled by OptCom and d-
OptCom for shared metabolites. While the former simply
balances the uptake and export fluxes of the shared metabolites,
the latter takes into account both fluxes and concentrations
when imposing mass balances. For example, if S. oneidensis
produces 10 mmol/gDW·h of acetate, regular OptCom predicts
that the same amount is directly available to G. sulfurreducens
and R. ferrireducens, whereas according to the conservation of
mass equations incorporated in d-OptCom, the uptake rate of
acetate by these two species is determined by both uptake
kinetics and cell density of S. oneidensis in the community.

Figure 3. Pictorial representation of the metabolic interactions in
anoxic subsurface uranium-reducing communities in the presence of S.
oneidensis. Acetate is supplied to G. sulfurreducens and R. ferrireducens
by S. oneidensis as well as by other microorganisms present in the
community.
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Therefore, the rate of change in the acetate concentration due
to 10 mmol/gDW·h of acetate production by S. oneidensis will

be only 6.4 × 10−7(mmol/h) for a cell density of 105 (cells/L)
and 6.4 × 10−4(mmol/h) for a cell density of 108 (cells/L) of S.

Figure 4. Dynamic behavior of the three-member community composed of S. oneidensis, G. sulfurreducens, and R. ferrireducens as predicted by d-
OptCom. (A) Cell density of each community member (cells/L) on a logarithmic scale. (B) Biomass fraction of each species computed using the
cell densities, (C) Lactate concentration, (D) acetate concentration, and (E) Fe(III) concentration. The simulations were performed for a lactate
concentration of 5 mM and acetate turnover rate of 0.2 μM/h, while modeling the Rifle site as a chemostat. The points on the curves represent the
simulation results and the connections between the discrete simulation points are just for the ease of representation.

Figure 5. Comparison of the effect of lactate and acetate injection on the combined biomass fractions of the U(VI)-reducing species (S. oneidensis
and G. sulfurreducens) So, Gs, and Rf stand for S. oneidensis, G. sulfurreducens, and R. ferrireducens, respectively. (A) using regular OptCom (where
biomass fractions are computed based on the ratio of biomass fluxes) and (B) using dynamic simulations with d-OptCom (where biomass fractions
are computed using the cell densities). (C) Concentration of the acetate in the medium (using d-OptCom), and (D) absolute value of the difference
between the predicted biomass fraction of each species under the lactate and acetate injection condition (using d-OptCom). The biomass fraction of
S. oneidensis is higher under the lactate injection condition, whereas that for G. sulfurreducens and R. ferrireducens is higher under the acetate injection.
Lactate and acetate addition for d-OptCom simulations were modeled by using a lactate concentration of 105 mM, and an acetate turnover rate of
4.2 μM/h,12 respectively. The points on curves represent simulation results and the connections between discrete simulation points are just for the
ease of representation.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb4001307 | ACS Synth. Biol. 2014, 3, 247−257252



oneidensis (cell mass of S. oneidensis was set at 6.4 × 10−7

following previous reports12). As such, the shared metabolite
distribution scenarios predicted by regular OptCom may not
always be consistent with d-OptCom predictions. For example,
according to the OptCom simulations, G. sulfurreducens can
take up 16.9 mmol/gDW·h of acetate while maximizing the
entire community biomass flux. In contrast, d-OptCom results
indicate that this rate cannot exceed 7.45 mmol/gDW·h over
the course of the dynamic simulations. This implies that the
flux distribution of the shared metabolites is more restricted in
d-OptCom, compared to regular OptCom as the uptake
efficiencies (determined by uptake kinetics), cell densities and
extra-cellular concentrations of the shared metabolites can
significantly limit the uptake rates of the shared resources by
different community members.
Analysis of the Impact of Lactate vs Acetate Amendment

on the Biomass Composition. Acetate injection in Rifle site
has been reported to lead to an increase in the G. sulfurreducens
fraction and as a result an increase in uranium reduction.12,13

We computationally assessed using OptCom and d-OptCom,
the impact of an alternative strategy, which is the injection of
lactate, the preferred carbon source for S. oneidensis.
OptCom Predictions. Different lactate and acetate uptake
conditions were examined using regular OptCom, while
keeping Fe(III) and ammonium uptake rates constant (see
Supporting Information for details). The rate of addition of
lactate (or acetate) was initialized at zero and increased by 1
mmol/gDW·h at each time interval. As shown in Figure 5A,
addition of lactate leads to a higher combined biomass fraction
of the U(VI)-reducing species (i.e., S. oneidensis and G.
sulfurreducens) compared to the acetate addition (assuming
that the ratio of biomass fluxes is proportional to that of
biomass concentration). For example, for a lactate injection rate
of 5 mmol/gDW.h (i.e., the total available lactate of 5 + 9.5 =
14.5 mmol/gDW·h), S. oneidensis and G. sulfurreducens form
73.4% of the total community biomass (according to biomass
fluxes) whereas for the same acetate uptake rate this percentage
is reduced to 69.0%. This is because according to OptCom

Figure 6. Uranium reduction flux in (A) S. oneidensis and (B) G. sulfurreducens as a function of biomass flux. (C) Comparison of the predicted
biomass and interspecies exchange fluxes using regular OptCom, when maximizing the total community biomass flux (sum of the biomass fluxes of
all three species) and maximizing the sum of the uranium reduction fluxes in G. sulfurreducens and S. oneidensis.
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predictions, addition of lactate not only increases the growth of
S. oneidensis, but it can also increase the acetate production by S.
oneidensis, thereby enhancing the growth of both G.
sulfurreducens and R. ferrireducens. For example, according to
the simulation results, the production of acetate by S. oneidensis
with a lactate injection rate of 5 mmol/gDW·h is 12.7 mmol/
gDW·h providing a total of (12.7 + 10 =) 22.7 mmol/gDW·h of
acetate, to the community members. On the other hand,
addition of 5 mmol/gDW·h acetate (i.e., total available acetate
of 5 + 10 = 15 mmol/gDW·h) only supports the growth of G.
sulfurreducens and R. ferrireducens but not that of S. oneidensis,
thus decreasing the total fraction of U(VI) reducers in the
community.
d-OptCom Predictions. Consistent with the regular OptCom,
dynamic simulations with d-OptCom show that addition of
lactate leads to a higher combined biomass fraction of S.
oneidensis and G. sulfurreducens (see Figure 5B). In addition, S.
oneidensis is predicted to dominate the community again in the
long run, irrespective of whether lactate or acetate is added. In
contrast to OptCom, d-OptCom, however, reveals that the
increase in the acetate concentration in the medium after the
injection of lactate is very small, even though its concentration
increases sharply after the dominance of the co-culture by S.
oneidensis (see Figure 5C) as the fraction of acetate consuming
species (i.e., G. sulfurreducens and R. ferrireducens) decrease
dramatically. This suggests that the increased availability of
acetate in the medium is less likely to be the only contributing
factor to the higher combined biomass fractions of the U(VI)-
reducing species after the lactate injection. This could instead
be due to the superior lactate uptake kinetics and growth yield
of S. oneidensis compared to those of G. sulfurreducens and R.
ferrireducens for acetate, as noted earlier. This hypothesis was
confirmed by plotting the predicted increase in the biomass
fractions of each of these species under the lactate and acetate
amendment condition (Figure 5D). Figure 5D shows that the
increase in the biomass fraction of S. oneidensis due to the
lactate addition is always higher than (or equal to) the increase
in the G. sulfurreducens and R. ferrireducens fractions due to
acetate injection. In other words, even though the acetate
amendment has a high impact on the growth of G.
sulfurreducens and R. ferrireducens, its contribution to the
combined biomass fractions of U(VI)-reducing species is
smaller compared to the significant increase in the fraction of
S. oneidensis due to the lactate injection. These results suggest
that the addition of lactate to this community may be a more
effective bioremediation strategy to enhance U(VI) reduction
compared to the addition of acetate. Moreover, given that S.
oneidensis dominates the community in the long run, addition of
this microorganism to the Rifle site may also be considered as
an alternative to the acetate or lactate amendment.
Modeling the Uranium Reduction Capability of the

Community. The metabolic models of G. sulfurreducens and
S. oneidensis were expanded to directly capture the U(VI)
reduction capability using an electron capacitance model
proposed by Zhao et al.67,68 It is unknown whether U(VI)
reduction is coupled with growth in G. sulfurreducens and S.
oneidensis.69−71 Plotting the flux of uranium reduction as a
function of the cell growth shows a rather competitive behavior
of uranium reduction flux and biomass flux for both G.
sulfurreducens and S. oneidensis (see Figure 6A and B). This is
because a portion of the available carbon source (lactate for S.
oneidensis, and acetate for G. sulfurreducens), serving as the sole

electron donor in the system, has to be used for the
extracellular uranium reduction instead of growth.
Here, we sought to maximize the Uranium reduction

capability of the community (i.e., sum of the fluxes of the
uranium reduction reactions in G. sulfurreducens and S.
oneidensis) using regular OptCom, in order to identify how
interspecies flux distribution is affected compared to max-
imization of the entire community biomass flux. The biomass of
each species was constrained to be at least 10% of their
maximum. The analysis shows that maximization of the
uranium reduction flux results in a decrease in the biomass
flux of the uranium-reducing species, namely G. sulfurreducens
and S. oneidensis (see Figure 6C): The biomass flux of S.
oneidensis and G. sulfurreducens decrease by 30% and 20%,
respectively, while the biomass of R. ferrireducens shows an
increase by only 2%. In addition, the uptake rate of Fe(III) by
G. sulfurreducens and S. oneidensis decreases by 12% and 23.5%,
respectively, while that for R. ferrireducens remains unaffected.
More importantly, the acetate production by S. oneidensis
decreases by 23% when maximizing the uranium reduction
capability of the community. All these observations can be
explained by the electron capacitance model,67,68 as max-
imization of the uranium reduction flux requires rerouting a
significant portion of the carbon flow from biomass formation,
byproduct production (i.e., acetate production by S. oneidensis)
and Fe(III) reduction toward uranium reduction. This implies
that the increased availability of the carbon source for the
uranium-reducing species (i.e., lactate for S. oneidensis and
acetate for G. sulfurreducens) as well as that for Fe(III) can
improve the uranium reduction. Even though lactate addition
was shown here to lead to a higher increase in the combined
biomass fraction of the uranium-reducing species, further
analyses using d-OptCom is needed to assess the impact of
lactate and acetate addition on the actual uranium concen-
tration in the environment.

■ SUMMARY AND CONCLUSIONS
In this study, we introduced d-OptCom, an extended version of
the OptCom procedure48 for the dynamic, multi-level, and
multi-objective metabolic modeling of microbial communities.
d-OptCom incorporates substrate uptake kinetics, whenever
available, into its modeling framework and accommodates the
time-dependent changes in biomass and extracellular concen-
trations of the shared resources by using conservation of mass
equations and couples them with conventional flux balance
analysis methods. Application of d-OptCom to model the cross
feeding of auxotrophic E. coli mutant pairs demonstrated the
need for simultaneously accounting for species- and commun-
ity-level fitness functions in a unified framework. The dynamic
analysis of uranium-reducing communities with an additional
member showed that the incorporation of kinetic information
can significantly sharpen the inference of inter-organism
metabolite trafficking due to the concentration limits of the
biomass shared metabolites and/or the relative differences in
the uptake efficiencies of community members. In addition, this
analysis revealed that addition of a new member to an existing
community can significantly affect the behavior and composi-
tion of the community exemplified in this study by the
dominance of tri-culture by S. oneidensis in the long run.
It is worth noting that a community-level objective function

for purely competitive interactions is unnecessary and one can
revert to simpler and computationally less expensive methods
such as the DMMM procedure.12 As such, OptCom and d-
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OptCom procedures are suitable for modeling microbial
communities with at least one cooperative (positive)
interaction among the community members. Even though a
universal community-level fitness function is not known yet,
maximization of the total community biomass concentration
(or flux) can be deemed as a reasonable surrogate, when
considering the entire community as a unified “super-organism”
analogous to a single species. Alternatively, it may be possible
to discern a community-level fitness function in some cases by
using meta-genomic and meta-transcriptomic data and
identifying the dominant set of metabolic functions that are
present (i.e., whose genes are highly expressed) under a certain
condition. Notably, the objective function of the outer problem
in OptCom and d-OptCom can be also used to represent a
desired phenotypic behavior of the community thereby
providing the opportunity to identify how interspecies
metabolic interactions or intracellular flux distributions should
be modified in order to satisfy a desired behavior. This was
shown in this study by the simulation of uranium reduction
capability of the uranium-reducing communities. Taking one
step further, OptCom and d-OptCom can be readily adjusted
to identify optimal “community engineering” strategies, to
achieve a desired objective. These engineering strategies could
be in the form of manipulating the environment for natural
communities where genetic modification of the community
members is not viable. For example, d-OptCom can be adjusted
to identify optimal patterns of Fe(III), lactate, or acetate
additions, or combinations thereof, in order to reduce the
actual uranium concentration in the environment below the
standard safety threshold.44 For synthetic microbial commun-
ities where the targeted modification of community members is
possible, d-OptCom can be adjusted to identify the optimal
intervention strategies for the community members leading to,
for example, the targeted overproduction of a desired product
from otherwise indigestible resources.
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